Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet S0140673621027240 https://doi.org/10.1016/S0140-6736(21)02724-0. (2022)
Ciba Foundation Symposium 207 – Antibiotic Resistance: Origins, Evolution, Selection and Spread. (John Wiley & Sons, Ltd., 1997). https://doi.org/10.1002/9780470515358.
Martinez, J. L. & Baquero, F. Mutation Frequencies and Antibiotic Resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).
Shoemaker, N. B., Vlamakis, H., Hayes, K. & Salyers, A. A. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ. Microbiol. 67, 561–568 (2001).
Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).
Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, 68–80 (2018).
Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).
Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).
Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).
Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).
Berglund, F. et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, 134 (2017).
Lund, D. et al. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microbial. Genom. 8, 1–16 (2022).
Wichmann, F., Udikovic-Kolic, N., Andrew, S. & Handelsman, J. Diverse antibiotic resistance genes in dairy cow manure. MBio 5, e01017 (2014).
Berglund, F. et al. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microbial. Genom. 6, 1–14 (2020).
Ebmeyer, S., Kristiansson, E. & Larsson, D. G. J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. 4, 8 (2021).
Lupo, A., Coyne, S. & Berendonk, T. U. Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Front. Microbio. 3, 1–13 (2012).
Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).
Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).
Hastings, P., Rosenberg, S. & Slack, A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12, 401–404 (2004).
Aubert, D., Naas, T., Héritier, C., Poirel, L. & Nordmann, P. Functional Characterization of IS 1999, an IS 4 Family Element Involved in Mobilization and Expression of β-Lactam Resistance Genes. J. Bacteriol. 188, 6506–6514 (2006).
Glansdorff, N., Charlier, D. & Zafarullah, M. Activation of Gene Expression by IS2 and IS3. Cold Spring Harb. Symposia Quant. Biol. 45, 153–156 (1981).
Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).
Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).
Yao, Y. et al. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01705-2 (2022).
Razavi, M., Kristiansson, E., Flach, C.-F. & Larsson, D. G. J. The Association between Insertion Sequences and Antibiotic Resistance Genes. mSphere 5, 1–14 (2020).
Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl Acad. Sci. U. S. A. 118, e2008731118 (2021).
Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).
Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502 (2015).
Fick, J. et al. Contamination Of Surface, Ground, And Drinking Water From Pharmaceutical Production. Environ. Toxicol. Chem. 28, 2522 (2009).
Martinez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).
Janda, J. M. & Abbott, S. L. The Genus Hafnia: from Soup to Nuts. CMR 19, 12–28 (2006).
Liu, H., Zhu, J., Hu, Q. & Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. Int. J. Infect. Dis. 50, 10–17 (2016).
Sequeira, R. P., McDonald, J. A. K., Marchesi, J. R. & Clarke, T. B. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat. Microbiol. 5, 304–313 (2020).
Drelichman, V. Bacteremias due to Citrobacter diversus and Citrobacter freundii: Incidence, Risk Factors, and Clinical Outcome. Arch. Intern. Med. 145, 1808 (1985).
Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).
Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016).
Wang, J., Chu, L., Wojnárovits, L. & Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ. 744, 140997 (2020).
Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017).
Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. B 369, 20130571 (2014).
Kraupner, N. et al. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150, 106436 (2021).
Flach, C.-F., Genheden, M., Fick, J. & Larsson, D. G. J. A Comprehensive Screening of Escherichia coli Isolates from Scandinavia’s Largest Sewage Treatment Plant Indicates No Selection for Antibiotic Resistance. Environ. Sci. Technol. 52, 11419–11428 (2018).
Östman, M., Lindberg, R. H., Fick, J., Björn, E. & Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 115, 318–328 (2017).
Poirel, L., Figueiredo, S., Cattoir, V., Carattoli, A. & Nordmann, P. Acinetobacter radioresistens as a Silent Source of Carbapenem Resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 52, 1252–1256 (2008).
Yoon, E.-J. et al. Origin in Acinetobacter guillouiae and Dissemination of the Aminoglycoside-Modifying Enzyme Aph(3′)-VI. mBio 5, e01972–14 (2014).
Poirel, L., Rodriguez-Martinez, J.-M., Mammeri, H., Liard, A. & Nordmann, P. Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA. AAC 49, 3523–3525 (2005).
Ito, R., Pacey, M. P., Mettus, R. T., Sluis-Cremer, N. & Doi, Y. Origin of the plasmid-mediated fosfomycin resistance gene fosA3. J. Antimicrob. Chemother. 73, 373–376 (2018).
Joseph, S. M., Battaglia, T., Maritz, J. M., Carlton, J. M. & Blaser, M. J. Longitudinal Comparison of Bacterial Diversity and Antibiotic Resistance Genes in New York City Sewage. mSystems 4, e00327–19 (2019). /msystems/4/4/msys.00327-19.atom.
Vikesland, P. J. et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environ. Sci. Technol. 51, 13061–13069 (2017).
Newton, R. J. et al. Sewage Reflects the Microbiomes of Human Populations. mBio 6, e02574–14 (2015).
Stachler, E. & Bibby, K. Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environ. Sci. Technol. Lett. 1, 405–409 (2014).
Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016).
Li, L. et al. Extended-Spectrum β-Lactamase and Carbapenemase Genes are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. Environ. Sci. Technol. 55, 5939–5949 (2021).
Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).
Lartigue, M.-F., Poirel, L., Aubert, D. & Nordmann, P. In Vitro Analysis of IS Ecp1B -Mediated Mobilization of Naturally Occurring β-Lactamase Gene bla CTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 50, 1282–1286 (2006).
Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol Rev. 21, 538–582 (2008).
Davin-Regli, A. & Pagès, J.-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6, 1–10 (2015).
Bagley, S. T. Habitat Association of Klebsiella Species. Infect. Control 6, 52–58 (1985).
Vela, A. I. et al. Moraxella pluranimalium sp. nov., isolated from animal specimens. Int. J. Syst. Evolut. Microbiol. 59, 671–674 (2009).
Martiny, H.-M., Munk, P., Brinch, C., Aarestrup, F. M. & Petersen, T. N. A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. PLoS Biol. 20, e3001792 (2022).
Baquero, F. et al. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 34, e00050–19 (2021).
Ford, P. J. Evolutionary mapping of the SHV -lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 54, 69–75 (2004).
Ribeiro, T. G., Novais, Â., Branquinho, R., Machado, E. & Peixe, L. Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species. Antimicrob. Agents Chemother. 59, 5951–5958 (2015).
Cantón, R., González-Alba, J. M. & Galán, J. C. CTX-M Enzymes: Origin and Diffusion. Front. Microbio. 3, 1–19 (2012).
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).
Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).
Bushnell B. BBMap. sourceforge.net/projects/bbmap/.
Li H. seqtk. https://github.com/lh3/seqtk.
Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 8, e61217 (2013).
Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Meas.: Interdiscip. Res. Perspect. 17, 160–167 (2019).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7 https://CRAN.R-project.org/package=vegan.
->Google Actualités