• Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet S0140673621027240 https://doi.org/10.1016/S0140-6736(21)02724-0. (2022)

  • Ciba Foundation Symposium 207 – Antibiotic Resistance: Origins, Evolution, Selection and Spread. (John Wiley & Sons, Ltd., 1997). https://doi.org/10.1002/9780470515358.

  • Martinez, J. L. & Baquero, F. Mutation Frequencies and Antibiotic Resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoemaker, N. B., Vlamakis, H., Hayes, K. & Salyers, A. A. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ. Microbiol. 67, 561–568 (2001).

    Publicité

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, 68–80 (2018).

  • Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglund, F. et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, 134 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lund, D. et al. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microbial. Genom. 8, 1–16 (2022).

  • Wichmann, F., Udikovic-Kolic, N., Andrew, S. & Handelsman, J. Diverse antibiotic resistance genes in dairy cow manure. MBio 5, e01017 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglund, F. et al. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microbial. Genom. 6, 1–14 (2020).

  • Ebmeyer, S., Kristiansson, E. & Larsson, D. G. J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. 4, 8 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupo, A., Coyne, S. & Berendonk, T. U. Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Front. Microbio. 3, 1–13 (2012).

  • Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Hastings, P., Rosenberg, S. & Slack, A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12, 401–404 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Aubert, D., Naas, T., Héritier, C., Poirel, L. & Nordmann, P. Functional Characterization of IS 1999, an IS 4 Family Element Involved in Mobilization and Expression of β-Lactam Resistance Genes. J. Bacteriol. 188, 6506–6514 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glansdorff, N., Charlier, D. & Zafarullah, M. Activation of Gene Expression by IS2 and IS3. Cold Spring Harb. Symposia Quant. Biol. 45, 153–156 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. et al. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01705-2 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Razavi, M., Kristiansson, E., Flach, C.-F. & Larsson, D. G. J. The Association between Insertion Sequences and Antibiotic Resistance Genes. mSphere 5, 1–14 (2020).

  • Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl Acad. Sci. U. S. A. 118, e2008731118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fick, J. et al. Contamination Of Surface, Ground, And Drinking Water From Pharmaceutical Production. Environ. Toxicol. Chem. 28, 2522 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Janda, J. M. & Abbott, S. L. The Genus Hafnia: from Soup to Nuts. CMR 19, 12–28 (2006).

    CAS 

    Google Scholar
     

  • Liu, H., Zhu, J., Hu, Q. & Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. Int. J. Infect. Dis. 50, 10–17 (2016).

    PubMed 

    Google Scholar
     

  • Sequeira, R. P., McDonald, J. A. K., Marchesi, J. R. & Clarke, T. B. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat. Microbiol. 5, 304–313 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drelichman, V. Bacteremias due to Citrobacter diversus and Citrobacter freundii: Incidence, Risk Factors, and Clinical Outcome. Arch. Intern. Med. 145, 1808 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).

    CAS 

    Google Scholar
     

  • Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Chu, L., Wojnárovits, L. & Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ. 744, 140997 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. B 369, 20130571 (2014).


    Google Scholar
     

  • Kraupner, N. et al. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150, 106436 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Flach, C.-F., Genheden, M., Fick, J. & Larsson, D. G. J. A Comprehensive Screening of Escherichia coli Isolates from Scandinavia’s Largest Sewage Treatment Plant Indicates No Selection for Antibiotic Resistance. Environ. Sci. Technol. 52, 11419–11428 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Östman, M., Lindberg, R. H., Fick, J., Björn, E. & Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 115, 318–328 (2017).

    PubMed 

    Google Scholar
     

  • Poirel, L., Figueiredo, S., Cattoir, V., Carattoli, A. & Nordmann, P. Acinetobacter radioresistens as a Silent Source of Carbapenem Resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 52, 1252–1256 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, E.-J. et al. Origin in Acinetobacter guillouiae and Dissemination of the Aminoglycoside-Modifying Enzyme Aph(3′)-VI. mBio 5, e01972–14 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirel, L., Rodriguez-Martinez, J.-M., Mammeri, H., Liard, A. & Nordmann, P. Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA. AAC 49, 3523–3525 (2005).

    CAS 

    Google Scholar
     

  • Ito, R., Pacey, M. P., Mettus, R. T., Sluis-Cremer, N. & Doi, Y. Origin of the plasmid-mediated fosfomycin resistance gene fosA3. J. Antimicrob. Chemother. 73, 373–376 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Joseph, S. M., Battaglia, T., Maritz, J. M., Carlton, J. M. & Blaser, M. J. Longitudinal Comparison of Bacterial Diversity and Antibiotic Resistance Genes in New York City Sewage. mSystems 4, e00327–19 (2019). /msystems/4/4/msys.00327-19.atom.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vikesland, P. J. et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environ. Sci. Technol. 51, 13061–13069 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Newton, R. J. et al. Sewage Reflects the Microbiomes of Human Populations. mBio 6, e02574–14 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stachler, E. & Bibby, K. Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environ. Sci. Technol. Lett. 1, 405–409 (2014).

    CAS 

    Google Scholar
     

  • Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Extended-Spectrum β-Lactamase and Carbapenemase Genes are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. Environ. Sci. Technol. 55, 5939–5949 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lartigue, M.-F., Poirel, L., Aubert, D. & Nordmann, P. In Vitro Analysis of IS Ecp1B -Mediated Mobilization of Naturally Occurring β-Lactamase Gene bla CTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 50, 1282–1286 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol Rev. 21, 538–582 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davin-Regli, A. & Pagès, J.-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 6, 1–10 (2015).

  • Bagley, S. T. Habitat Association of Klebsiella Species. Infect. Control 6, 52–58 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Vela, A. I. et al. Moraxella pluranimalium sp. nov., isolated from animal specimens. Int. J. Syst. Evolut. Microbiol. 59, 671–674 (2009).

    CAS 

    Google Scholar
     

  • Martiny, H.-M., Munk, P., Brinch, C., Aarestrup, F. M. & Petersen, T. N. A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. PLoS Biol. 20, e3001792 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baquero, F. et al. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 34, e00050–19 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, P. J. Evolutionary mapping of the SHV -lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 54, 69–75 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro, T. G., Novais, Â., Branquinho, R., Machado, E. & Peixe, L. Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species. Antimicrob. Agents Chemother. 59, 5951–5958 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantón, R., González-Alba, J. M. & Galán, J. C. CTX-M Enzymes: Origin and Diffusion. Front. Microbio. 3, 1–19 (2012).

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).

    PubMed 

    Google Scholar
     

  • Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushnell B. BBMap. sourceforge.net/projects/bbmap/.

  • Li H. seqtk. https://github.com/lh3/seqtk.

  • Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Meas.: Interdiscip. Res. Perspect. 17, 160–167 (2019).


    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7 https://CRAN.R-project.org/package=vegan.

  • ->Google Actualités

    Rate this post
    Publicité
    Article précédentQuand faire une pause toilette pendant Demon Slayer Movie 2 ?
    Article suivantThe Demon Sword Master of Excalibur Academy TV Anime révèle son personnel et diffuse une nouvelle vidéo promotionnelle – News 24

    LAISSER UN COMMENTAIRE

    S'il vous plaît entrez votre commentaire!
    S'il vous plaît entrez votre nom ici