- Publicité -


Google a introduit le Graphique de connaissances en 2012 pour aider les chercheurs à découvrir plus rapidement de nouvelles informations.

Essentiellement, les utilisateurs peuvent rechercher des lieux, des personnes, des entreprises et des produits et trouver des résultats instantanés qui sont les plus pertinents pour la requête.

Le Knowledge Graph est une collection de sujets, également connus sous le nom de Entités, se connectant à d’autres entités. Les entités sont des objets d’information uniques qui peuvent être définis de manière unique.

- Publicité -

Ils permettent à Google d’aller au-delà de la simple correspondance de mots clés lors du renvoi d’une réponse à une requête particulière. Cela aide davantage Google à atteindre son objectif de devenir un moteur de réponse.

Google affichera les données Knowledge Graph dans les fonctionnalités SERP tels que des panneaux de connaissances, des cartes de connaissances et des extraits en vedette.

Cela peut aider les marques à devenir plus visibles dans les résultats de recherche et à renforcer l’autorité pour certains sujets. Les données structurées sur les sites Web peuvent influencer les données extraites dans le Knowledge Graph.

Google utilise le Knowledge Graph pour offrir une meilleure expérience de recherche aux utilisateurs, car il peut mieux comprendre différents sujets et leurs relations les uns avec les autres.

Par exemple, si nous voulons voir le casting d’un film, Google peut l’afficher dans un format carrousel sur la page de résultats de recherche.

Exemple de carrouselCapture d’écran de Google, septembre 2022

Cependant, ces fonctionnalités SERP (page de résultats des moteurs de recherche) peuvent également entraîner moins de clics sur le site Web, car Google peut afficher beaucoup plus d’informations sur la page de résultats de recherche.

Cela leur permet de fournir une réponse rapide et précise aux chercheurs et de les diriger vers d’autres résultats de recherche, avec des fonctionnalités telles que « Les gens recherchent également » et des requêtes pertinentes liées au terme de recherche principal.

Par exemple, si nous prenons le groupe de K-pop BTS, en une seule recherche, je peux voir une liste de tous les membres, leurs chansons et albums, ainsi que les événements à venir, les prix qu’ils ont gagnés et les différents endroits où je peux écouter leur musique.

Tout en une seule recherche sans avoir à visiter un seul site Web externe.

Exemple de fonctionnalité SERP BTSCapture d’écran de Google, septembre 2022

L’API Knowledge Graph

L’API Knowledge Graph, que Google a créée, nous permet de trouver des entités dans le Google Knowledge Graph pour certaines requêtes.

Il nous donne un accès direct à la base de données pour voir les entités marquées pour chaque requête. Il est également indépendant de l’emplacement de l’utilisateur, fournissant une vue plus précise du Knowledge Graph.

Voici quelques exemples de cas d’utilisation de l’API, tels que fournis par Google :

  • Obtenir une liste classée des entités les plus notables qui correspondent à certains critères.
  • Ils complètent de manière prédictive des entités dans une zone de recherche.
  • Annotation/organisation du contenu à l’aide des entités Knowledge Graph.

Comme l’indique la documentation, l’API elle-même renvoie uniquement des entités correspondantes individuelles plutôt que des graphiques d’entités interconnectées.

Utilisation de Python pour appeler l’API

Il existe quatre clients différents via lesquels Google permet d’appeler l’API : Python, Java, JavaScript et PHP.

Un exemple de point de départ pour chacun peut être trouvé sur la page correspondante de la documentation.

Pour cet exemple, je vais utiliser Python car c’est le langage que je connais le mieux.

Création d’une clé API

La première étape consiste à créer une clé API pour envoyer une demande à l’API.

Pour générer une clé API, accédez à la console API Google et accédez à l’icône page d’informations d’identification.

L’étape suivante consiste à passer à l’ Bibliothèque d’API, recherchez Knowledge Graph, puis activez-le.

API Knowledge Graph,Capture d’écran de l’API Knowledge Graph, septembre 2022

Vous pouvez enregistrer une note de votre clé API, mais vous pouvez également retrouver facilement la clé API en cliquant sur l’API que vous avez déjà générée.

API Knowledge Graph des informations d’identificationCapture d’écran de l’API Knowledge Graph, septembre 2022

Une simple demande d’API

Pour renvoyer des entités correspondant à une requête, ainsi que le score de résultats pour chaque entité, il existe un simple morceau de code Python que vous pouvez exécuter, soit dans Google Colab (facilement accessible pour les débutants), soit dans votre environnement local.

api_key = ' ' #add your API key
query = 'BTS' #add your query
service_url="https://kgsearch.googleapis.com/v1/entities:search"
params = {
'query': query,
'limit': 10,
'indent': True,
'key': api_key,
}
url = service_url + '?' + urllib.parse.urlencode(params)
response = json.loads(urllib.request.urlopen(url).read())
for element in response['itemListElement']:
print(element['result']['name'] + ' (' + str(element['resultScore']) + ')')

Cela produira un résultat comme celui ci-dessous:

Réponse de l’APICapture d’écran de Google Colab, septembre 2022

Dans ce cadre, nous pouvons définir quelques paramètres, en fonction de ce que nous recherchons.

La première chose que vous devrez ajouter est votre clé API, suivie de la requête pour laquelle vous souhaitez générer les résultats.

Les paramètres sont ensuite définis pour appeler la clé API que vous avez déjà ajoutée et la requête que vous avez sélectionnée.

Cela vous permet de modifier facilement la requête que vous recherchez chaque fois que vous exécutez le code.

Ensuite, nous avons la limite, qui est le nombre d’entités que vous souhaitez renvoyer. La valeur par défaut est 20, avec un maximum de 500. N’oubliez pas que les demandes avec des limites élevées ont plus de chances d’expirer.

Ensuite, nous pouvons utiliser un booléen (True ou False) pour décider si nous voulons mettre en retrait la réponse JSON pour une mise en forme facile.

Il existe d’autres paramètres que vous pouvez inclure, tels que :

  • Traduction: une liste des codes de langue auxquels vous souhaitez limiter la réponse.
  • Types: utilisé pour limiter les entités à celles du type que vous choisissez, par exemple, si vous ne voulez que des résultats d’entité « Personne ».

Nous demandons ensuite au script d’appeler l’URL, de compléter la demande et d’analyser le résultat en une simple impression du nom de l’entité et du score de résultat pour chaque entité, qui sera entre parenthèses.

Extraire encore plus

Renvoyer les entités et leur score de résultat ne fait qu’effleurer la surface. Il y a tellement plus que nous pouvons obtenir de l’API Knowledge Graph.

Nous pouvons renvoyer un objet JSON contenant tous les champs de réponse stockés pour chaque entité avec quelques lignes de code supplémentaires et quelques fonctions.

Tout d’abord, nous voulons demander un retour de la page de la session qui sera recherchée via l’API.

def get_source(url):
try:
session = HTMLSession()
response = session.get(url)
return response
except requests.exceptions.RequestException as e:
print(e)

Ensuite, en utilisant une requête API similaire à celle du code d’origine, nous pouvons l’appeler conjointement avec notre requête de requête en utilisant les mêmes paramètres.

def knowledge_graph(api_key, query):
query = 'BTS' #add your query
service_url="https://kgsearch.googleapis.com/v1/entities:search"
params = {
'query': query,
'limit': 10,
'indent': True,
'key': api_key,
}
url = service_url + '?' + urllib.parse.urlencode(params)
response = get_source(url)

Ensuite, nous entrons notre clé API pour renvoyer notre objet de réponse avec les données complètes.

return json.loads(response.text)
api_key = " " #add your API key
knowledge_graph_json = knowledge_graph(api_key, query)
knowledge_graph_json

Pour voir les résultats un peu plus facilement et aider à donner plus de sens à la réponse, nous pouvons normaliser le JSON dans un DataFrame Pandas. Cela prendra chaque champ et le transférera dans une colonne, chaque entité étant une ligne différente.

.json_normalize(knowledge_graph_json, record_path=’itemListElement’)

Un guide de l’API de recherche Knowledge Graph de Google pour le référencement

J’ai également trouvé intéressant d’exécuter ce code à différents jours avec la même requête et d’examiner comment les résultats changent.

Champs de réponse

Plusieurs champs seront extraits pour chaque entité au sein de l’API Knowledge Graph :

  • id: URI canonique de l’entité.
  • nom: le nom de l’entité.
  • type: une liste des types de schéma pris en charge qui correspondent à l’entité.
  • description: une brève description de l’entité.
  • image: une image liée à l’entité.
  • description détaillée: une description détaillée de l’entité.
  • URL: le site officiel de l’entité.
  • resultScore : Indicateur de la correspondance de l’entité avec la requête.

Le champ id fait référence au MID (machine-generated identifier), un identifiant unique pour chaque entité.

Cela commence généralement par kg:/m/ suivi d’une courte chaîne ajoutée. Les MID décomposent le langage humain dans un format que les machines peuvent comprendre.

Ces MID correspondent également à l’entité dans Google Trends et peuvent également être utilisés pour récupérer l’URL de chaque entité, même s’il n’existe pas de panneau de connaissances pour cela.

Score de confiance

Le resultScore (également connu sous le nom de score de confiance) représente la confiance de Google dans sa compréhension de l’entité. Il s’agit essentiellement de la force perçue de la relation entre l’entité que Google a reconnue pour la requête et l’entité qui a été renvoyée.

Plus le score de résultat est élevé, plus Google a confiance dans le fait que l’entité correspond le mieux à la requête.

Cependant, il n’y a aucune garantie que l’entité avec le score le plus élevé apparaîtra comme l’extrait en vedette dans les résultats de recherche.

Ce score, en particulier, est utile lors de l’analyse de différentes requêtes pour les opportunités.

Par exemple, supposons que vous remarquiez de faibles scores de circonscription pour une requête particulière. Dans ce cas, cela met en évidence la possibilité d’optimiser les pages pour dépasser les pages identifiées pour l’entité.

L’URL de l’entité est également considérée comme le »page d’accueil de l’entité», qui est le site Web et la page que Google reconnaît comme les plus fiables.urce avec les informations les plus précises sur l’entité.

Pour améliorer le score de confiance, il est important de s’assurer que votre site Web est cohérent avec les informations sur le domicile de l’entité.

L’amélioration de la qualité et des détails fournis sur une page Web contribuera également à améliorer le score de confiance, en l’associant à une activité de relations publiques pour renforcer davantage l’autorité du site Web sur le sujet de l’entité choisie.

Extraction d’informations

Vous pouvez faire plusieurs choses avec les résultats de votre réponse Knowledge Graph, y compris identifier les domaines d’opportunité et examiner les entités actuelles et les maisons d’entité pour des requêtes particulières.

Par exemple, s’assurer que vous disposez du balisage de schéma et de l’optimisation sur la page les plus appropriés pour vous connecter à vos entités cibles est une première étape importante.

Recherche de mots-clés

Lorsque vous effectuez une recherche de mots clés, il convient de déterminer si votre ciblage actuel a du sens si une entité forte existe pour un mot clé particulier.

Après tout, l’objectif global de Google est de fournir les informations les plus utiles dans les résultats de recherche. Avec Recherche sans clic de plus en plus, la concurrence pour les termes de recherche et la possibilité d’apparaître dans les fonctionnalités SERP augmentent également.

Renforcement de la marque

L’utilisation d’entités est un excellent moyen de construire la présence et l’autorité de recherche organique d’une marque ou d’une entreprise dans un espace particulier.

Il est utile de connaître les entités derrière une certaine requête. Ils peuvent nous donner un aperçu de la recherche de mots-clés et rendre encore plus facile la création de contenu faisant autorité et utile en ligne avec cela.

Recherche sur les concurrents

Comme l’API fournit une liste classée d’entités qui apparaissent pour les requêtes, vous pouvez afficher un niveau élevé d’informations plutôt que d’effectuer de nombreuses recherches pour voir ce qui apparaît.

Cela vous permettra d’examiner les performances de vos concurrents pour des requêtes particulières et la façon dont vous vous comparez.

Vous pouvez également utiliser ces informations pour vous assurer que vous pouvez augmenter votre score de confiance pour dépasser vos concurrents dans les résultats.

L’API vous permet de garder une trace de cela régulièrement et de signaler tout changement que vous voyez, potentiellement avant que les fonctionnalités SERP ne changent.

En résumé

J’espère que cela vous a fourni un point de départ pour analyser le Knowledge Graph et extraire des informations précieuses pour vous aider à optimiser votre apparence dans les fonctionnalités de recherche.

Comme l’explique Google, le Knowledge Graph est utilisé pour améliorer la recherche Google afin de trouver la bonne chose, d’obtenir le meilleur résumé et d’aller plus loin et plus largement.

Être capable de voir sous le capot du Knowledge Graph est un excellent point de départ pour s’assurer que votre site Web est la meilleure source que Google peut utiliser pour le faire.

J’ai créé un bloc-notes Google Colab ici pour que vous puissiez utiliser et jouer avec le code.

J’aimerais savoir quelles informations vous avez extraites pour vos requêtes. (N’oubliez pas de faire une copie et d’ajouter votre propre API générée).

Vous pouvez également trouver une version du code sur GitHub ici.

Plus de ressources :


Image en vedette: REDPIXEL.PL/Shutterstock



Rate this post
Avatar
Violette Laurent est une blogueuse tech nantaise diplômée en communication de masse et douée pour l'écriture. Elle est la rédactrice en chef de fr.techtribune.net. Les sujets de prédilection de Violette sont la technologie et la cryptographie. Elle est également une grande fan d'Anime et de Manga.

LAISSER UN COMMENTAIRE

S'il vous plaît entrez votre commentaire!
S'il vous plaît entrez votre nom ici